akasa
AKASA
August 13, 2021

The Gist

Byung-Hak Kim, AI technology lead at AKASA, spends his days thinking of ways to advance the machine learning that power's our automation. Read on to learn what keeps Hak motivated, what he believes makes someone successful at AKASA, and more.

As a part of our People of AKASA series, we’re interviewing the folks behind the brand. From engineering to revenue cycle operations to customer success to culture, here are the people building the future of healthcare with AI.
Today, meet Hak (he/him), our AI technology lead, and learn why he wants to solve problems that matter. Connect with Hak on LinkedIn and check out his personal website.

I enjoy working on ML for positive impacts, and I’m proud that at AKASA, we’re solving problems that directly matter to people’s lives!

~ Byung-Hak Kim Ph.D., AI Technology Lead at AKASA

1. What’s your job at AKASA?

As an AI technology lead, I am primarily responsible for advancing AKASA’s machine learning research vision, including choosing impactful problems, carrying out projects autonomously, and working closely with engineers to build.

This is my third startup, and I was one of the first hires here. I like innovation — finding problems, generating creative ideas, improving upon existing ideas in machine learning, and delivering thoughtful solutions to impact our products continually.

One of the critical differentiations at AKASA is our AI and ML expertise. Along with other colleagues, I regularly publish peer-reviewed papers to share our research and findings.

I just presented at the Machine Learning for Healthcare Conference on a new research study about how a machine learning approach outperformed current models for automatic coding of inpatient clinical notes by more than 18%.

Another high-level theme I researched recently was how to address Baumol’s cost disease in healthcare with machine learning. In particular, I was interested in harnessing state-of-the-art deep learning techniques to automate how medical bills are processed and paid in healthcare revenue cycle management settings.

2. Why did you join AKASA?

I wanted to do something that my daughter, Hayden, could be proud of. As I told my wife, Heidi, when I was thinking about joining the team: “There are a lot of complaints about the U.S. healthcare system, and the team has the vision to solve some of those pain points through AI.”

In the summer of 2017, I took a short career break between my first and second startups (Capio, followed by Udacity). This break allowed me to look back on myself and my role in Silicon Valley. I realized that my career had been primarily influenced by the hustle culture that dominates the Valley. My work had never directly helped my neighbors, unlike my intentions. It was a heartbreaking realization. I was determined to live by doing meaningful work, labor, and innovation that positively impacts my neighbors — directly — in the age of AI.

I enjoy working on ML for positive impacts, and I’m proud that at AKASA, we’re solving problems that directly matter to people’s lives!

3. Where have you lived?

I grew up in Seoul, Korea, and spent my twenties in Sri Lanka and Cambodia working for the Korea International Cooperation Agency (KOICA), referred to as “the Peace Corps program in South Korea.” Then I moved to the U.S. for grad school at Texas A&M University. Since I finished my Ph.D., I’ve been living in the Bay Area.

4. What was your first job?

When I started applying for jobs in the spring of 2011 during the last year of my Ph.D., there weren’t many opportunities in AI or machine learning. I started my first job in the core R&D team of Marvell Semiconductor, similar to my graduate labmates.

I joined a core R&D team leading innovation in the storage field for more than ten years. Given the nature of the group, we had a lot of authority and autonomy at the same time.

I was responsible for proposing a new signal processing algorithm idea to improve the current system’s performance at a meeting where the manager, director, and VP came every week. With the benefits from the sharp feedback pouring in and the numerous discussions and conversations that followed, I grew from a fresh PhD graduate who just finished Ph.D. to a more mature architect.

5. What’s one word you’d use to describe AKASA?

Change.

We innovate new ML systems towards a future where patients aren’t bankrupted, and healthcare workers can solely focus on the “care” part of healthcare!

6. What do you think makes someone successful at AKASA?

Different technical people have different styles. They’re often somewhere in between the problem-solver and problem-creator types. The problem-solver solves defined problems, and the problem-creator identifies new problems.

In a typical educational environment, many people are taught to be problem-solvers who technically solve known problems. There are more problem-solvers in society and relatively few problem-creators.

I think it would be good for more people to grow as problem-creators to bring category-defining (or disruptive) innovations through AKASA.Learn how AKASA uses machine learning and an expert-in-the-loop system to solve for the unknown unknowns in this Forbes article by CEO Malinka Walaliyadde.

7. What does your workspace look like?

My home office consists of a stand-up desk and ErgoStool, plus two monitors (one horizontal and one vertical) and an AKASA gaming pad. And, of course, a stack of research papers.

This is a photo from when I was in the AKASA office pre-COVID.

8. What’s the last book you read?

I occasionally write book reviews for Korean speakers. Here are three books I read recently that I think many people will find interesting:

9. What AKASA value is the most meaningful for you?

Lead with Empathy because we’re like a caring physician who also holds a Ph.D. in engineering!

10. Complete this sentence: I am happiest when…

I am happiest when my daughter Hayden reads her books while I am reading research papers.

Read more about Hak’s work at AKASA:

Form-Logo

Get our monthly newsletter

You may also like

Blog Resource
May 1, 2023

ChatGPT and Healthcare: Exciting Potential That Needs To Be Channeled

Recently I heard that as a fun exercise, the security officer at one of our healthcare clients tried asking...

Blog Resource
Jan 26, 2023

9 Healthcare Technology Trends To Watch in 2023

Keeping track of the rapid changes in healthcare technology is no small task. The industry has seen numerous healthcare...

Blog Resource
Nov 29, 2022

The Gradient Podcast: An Interview on AI and Healthcare With AKASA CTO and Co-Founder Varun Ganapathi

On a recent episode of the Gradient Podcast, host Daniel Bashir sat down with AKASA CTO and co-founder, Varun...

Blog physician checking patient heart
Nov 1, 2022

A Facial Focus on Health: My Movember Experience and Commitment to Making a Difference in Men’s Health

Nearly 20 years ago, two gentlemen and a small group of their friends in Australia decided to bring awareness...

Blog Machine Learning in Medicine: Using AI to Predict Optimal Treatments Hero Image
Aug 30, 2022

Machine Learning in Medicine: Using AI to Predict Optimal Treatments

At AKASA, we’re always thinking about how we can use machine learning (ML) and artificial intelligence (AI) to better...

Blog Reaffirming Our Commitment to Data Security and Privacy Hero Image
Aug 29, 2022

Reaffirming Our Commitment to Data Security and Privacy

Data plays a vital role in our work at AKASA — without it, we wouldn’t be able to provide...

Blog Machine learning in emr hero image
Aug 25, 2022

Mining Electronic Medical Records for Cancer Treatment Decisions

At AKASA, we are constantly exploring the intersection of machine learning (ML), artificial intelligence (AI), and the healthcare and...

Blog Becker’s: Interview with AKASA Co-Founders Hero Image
Aug 11, 2022

Becker’s Hospital Review Podcast: An Interview with AKASA Co-Founders

On a recent episode of the Becker’s Hospital Review Podcast, Scott Becker sat down with AKASA co-founders, Malinka Walaliyadde...

Find out how AKASA's AI-driven automation can help you.